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The effects of lesions on the generalization ability of a 
perceptron 
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Cahta Postal 369,13560 Si0 Carlos Sp, Brazil 

Received 27 September 1992 

Abstract. We investigate the effects of dilution (lesions) on the memorization 
and generalization abilities of a single-layer perceptmn whose non-zem weights are 
constrained to take on binaly (il) values only. The diluted perceptmn h trained 10 
realize a Boolean linearly separable mapping generated by a fully connected perceplmn. 
In lhe case where the lraining pmcess is disturbed by noise and the vanishing weights 
are chosen so as to minimize the training ermr, we find that the dilution can imprwe 
the storage capacity and the generalizalion ability of the network. If the weights are cut 
randomly, however, the dilulion will always degrade the network’s performance. I n  this 
case we show that the main effect of dilulion is to introduce an effective noise in the 
training examples. 

1. Introduction 

The study of the cognitive capabilities of patients who suffer from neurological 
damage has provided many clues to the understanding of the brain as, for instance, 
the localization of brain functions and the absence of a specifk location for the 
memory. The design of artificial neural networks has long benefited from this 
neurological information, as attested by the associative memory models, where the 
memories are scattered throughout the networKs synaptic weights (Hopfield 1982) in 
the hope of obtaining the robusmess of the brain’s memory system under destruction 
of neurons and synapses. On the other hand, the study of the effects of dilution 
(lesions) on artificial neural networks may indicate which properties of the brain are 
robust to details of model building. In this vein, Virasoro (1988) has shown that 
the random destruction of weights in a network that storm ultrametric memories 
produces a pattern similar to the prosopagnosia syndrome, which affects the capacity 
of recognizing individuals belonging to the same category. It seems then that both 
systems, the brain and artificial neural networks, employ the same principles to achieve 
categorization. 

In this paper we use Gardner’s (1988) statistical mechanics formalism to 
investigate how the elimination of a fixed fraction of synaptic weights affects the 
memorization and generalization performances of a single-layer perceptron whose 
non-zero weights are constrained to take on binary ( i l )  values only. We consider 
two types of dilution which, following Bouten er al (1990a), we term annealed and 
quenched dilution. In the former case, the learning process determines which weights 
must be eliminated so as to minimize the effects of the lesion on the training error, 
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while in the latter case the weights are cut randomly. Bouten e# a1 (199Oa, b) have 
studied the effects of both types of dilution on the storage capacity of nctworks of 
binary as well as real weights trained to realize random input/output mappings. The 
mapping we consider in this paper, however, is generated by a non-damaged reference 
percepaon (teacher perceptron), so it cannot be perfectly realized by the damaged 
network (student perceptron). Essentially, this is a version of the problem of learning 
unrealizable rules with perceptrons (Seung et a1 1992, Meir and Fontanari 1992, 
Watkin and Rau 1992). 'Ib better appreciate the effects of dilution, we also study the 
problem of training the student perceptron with patterns corrupted by noise, showing 
that the annealed dilution can in fact improve the performance of the network in this 
case. Furthermore, we show that the main effect of quenched dilution is to introduce 
an effective noise in the training patterns. 

In the case of binary-weights perceptrons, the problem of learning unrealizable 
rules, similarly to the random mapping problem, is not amenable to analysis within 
the canonical replica-symmetric formulation (Gardner and Derrida 1988, Krauth and 
Mezard 1989, Seung e# a1 1992), requiring a more elaborate framework, namely 
Parisi's replica symmetry breaking scheme (Parisi 1980, Mezard el a2 1987). However, 
it was argued recently that the microcanonical replica-symmetric formulation provides 
a valuable approximation to study the thermodynamics of these models (Fontanari 
and M e i  1992), giving the exact solution for models that possess a frozen phase akin 
to the one present in the random-energy model (Derrida 1981) or in the simplest spin 
glass (Gross and Mezard 1984). Since a similar frozen phase appears in the random 
mapping problem (Krauth and Mezard 1989) as well as in the problem of learning 
realizable rules (Gyiirgi 1990, Seung er a1 1992), we believe that this phenomenon 
must also occur in the somewhat intermediate problem of learning unrealizable rules 
considered in this work. In this sense, we think that the results presented in this 
paper, obtained within the microcanonical replica-symmetric framework, are probably 
exact. 

The remainder of this paper is organized as follows. In section 2 we describe the 
model and present the microcanonical version of the statistical mechanics of discrete- 
weights neural networks. The annealed and quenched dilutions are studied within the 
replica framework in sections 3 and 4, respectively. Finally, in section 5 we discuss 
our results and present some concluding remarks. 

D M L Barbalo and J F Fonranari 

2. The model 

The neural network we consider in this paper consists of N binary input units 
Si = f l  (i = 1,. . . , N ) ,  N synaptic weights Wi (i = 1 , .  . . , N ) ,  and a single 
output unit 

The task of the student perceptron is to realize the mapping between the 2N possible 
input configurations {t} and their respective outputs (1) generated by the teacher 
perceptron, 
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where W," = A1 (i = 1,. . . , N )  are the weights of the teacher perceptton. To 
achieve this task, the network is trained with P = cuN input/output pairs (S', t ' )  
(1  = 1,. . . , P) where t1  is the teacher's output to input E' and each component SI 
is drawn from the conditional probability distribution 

with [j chosen randomly as il with e ual probability. The input pattern Sf is thus 

communication between teacher and student during the training stage is disturbed 
by noise, whose strength is measured by parameter y E [O, l ] .  The case y = 0 
corresponds to the random-mapping problem (maximal noise) and y = 1 to the 
problem of training with pure (noiseless) pattems. 

For a fixed realization of the input/output pairs, the training process consists of a 
search on the space of networks for the global minima of the waifling energy, defined 
as 

a noisy version of the pure pattern [ 9 . We are modelling a situation where the 

P 
E ( W , S ,  1 )  = C O  ( - $ U  (W,  SI)) 

'=I 
(4) 

where O(z )  is 1 for positive I and zero otherwise and u ( W , S l )  is the student's 
response to noisy input S'. We note that the training energy does not give direct 
information about the network's performance on classifying correctly the P pure 
patterns associated with the noisy training examples (unless y = 1, of course). In this 
paper we focus mainly on the network's performance on the whole domain of the 
mapping defined by (2). With this purpace we define the generalization function 

E, (W)  = 2 - N  C O  (-tu (W,E)) (5)  
{<I 

where u(W,e)  is the student's output to pure input E and the summation is over 
the 2N possible input patterns. Thus, although the network is trained with noisy 
examples, its generalization ability is tested on the classification of pure patterns. The 
generalization error is obtained by averaging (5) over all possible realizations of the 
input/output mapping, i.e. over the ZN possible teacher networks. We refer the reader 
to Gyorgi and Tishby (1989) and Seung er a1 (1992) for a more thorough discussion 
of the problem of learning from examples in neural networks. 

The student network is damaged by setting a fraction 1 - Q (degree of dilution) 
of its weights to zero. The remaining N Q  weights are constrained to assume the 
values only. In the case of annealed dilution, the vanishing weights are chosen 
so as to minimize the training energy (equation (4)) implying thus that the dilution 
process depends on the particular realization of the input/output mapping. To study 
this problem, we consider the space of networks whose weights can take on the values 
Wi = 0, &l and obey the constraint 

l N  - C W / = Q  N 
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which ensures the correct degree of dilution. On the other hand, in the case of 
quenched dilution the weights are cut randomly, independently of the realization of 
the input/output mapping. Therefore, without loss of generality, we can set UTi = 0 
(i = NQ + 1,. . . , N) so that (6) is satisfied automatically. In both cases, however, 
the generalization function (equation (5)) reduces to 

where R is the overlap of the student network with the teacher network, i.e. 

N 
W;wi. 1 R=- 

N Q  i=l 

Clearly, the best generalization performance is achieved for R = 1, independently of 
the type of dilution considered. However, we shall see that in the case of annealed 
dilution the student needs less training examples to approach this optimal regime 
than in the quenched case. 

The main purpose of this paper is to study how the generalization error assigned 
to the global minima (ground states) of the training energy depends on the noise 
parameter 7 ,  the connectivity Q ,  and the size of the training set a. Within the 
microcanonical formalism these minima can easily be characterized by computin 
N( E), the number of networks with energy E 2 0. For a fixed realization of S', f 
and WO, this quantity can he computed by defining the function Yw which is 1 if 
E ( W , S , t )  = E and zero otherwise, so that 

f 

N (  E )  = n,yw (9) 

where Tr, is the summation over all allowed weight configurations (networks). 
lb rid our results of the dependence on the realization of the input/output 

mapping, we follow the standard prescription of taking averages over extensive 
quantities only, as they become self-averaging in the limit N + cc (Binder and 
Young 1986), and define the average~entropy density 

(10) 
1 

s ( E )  = x( ( lnJV(E) ) )  . 
Here, (( . . .)) stands for the averages over SI, 5' and W". Since N( E) is a non- 
negative integer, s ( E )  cannot take on finite negative values. Thus, the ground- 
state energy E@ satisfies s( E 3 E,) > 0 and s( E < E,) = --CO. The ground- 
state entropy density sgr = s( E = E@) gives information about the ground-state 
degeneracy: in the case s, > 0, the number of ground states is of order exp( N s ~ ) ,  
while in the case sg = 0, it is of order N z  (I > 0). Furthermore, E@ is a good 
measure of the network's memorization capability, allowing us to define the network's 
storage capacity a, as the ratio between the maximal number of inputloutput pairs 
for which Ep = 0 and the number of input units N .  

The average m (10) is evaluated within the replica framework, which consists 
basically of using the identity 

1 
((lnN(E))) = lim -ln(((N(E))n)) 

n-U 72 
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evaluating (( (hf( E))n )) for integer n and then analytically continuing to n z 0. 
Noting that the training energy (equation (4)) is a random variable distributed 
according to the probability distribution 

P(Ed = ( ( 6 ( E , - E ( W , S , O ) ) )  (12) 

the calculation of the nth moment of N( E) becomes straightforward: 

(( (N(E))" )) = = T t w t  . . . 'Itwm P (E: = E ,  . . . , E; = E )  

(13) 
where P( Et = E,.  . . ,E:  = E) is the joint probability that networks W', . . . , W n  
have energy equal to E. Therefore 

Using the integral representation of the delta function and defining the training error 
c = E / a N  E [0 ,4  we find 

where 

2(8 ,S , t )  = Ttwexp(--EIE(W,S,l)) (16) 

is the canonical partition function with 2 playing the role of the inverse temperature. 
The connection With the canonical formulation is made through the thermodynamic 
relationship 

In the next two sections we evaluate the average entropy density for the cases of 
annealed and quenched dilutions. As mentioned before, these problems differ only in 
the way the summation over the allowed weight configurations (Trw) is performed. 

3. Annealed dilution 

In this case, the weights are allowed to take on the values 0, *l and the constraint (6) 
must be enforced by a Kronecker delta. Using standard techniques (Gardner 1988, 
Gardner and Derrida 1988) we obtain, in the thermodynamic limit, 
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where 
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0 a 
C $ b ~ ~ o ~ b + C & ~ ( ~ a ) 2 + C a o ~ 7 a ~ U  

(19) 

and 

with the notation 

Here, a' 
parameters 

a/Q and y' E y a .  The extremum in (18) is taken over all order 
&, &,, qob, Ra). The physical order parameters 

and 

measure the overlap between two different networks with training error e and the 
overlap between a network with training error e and the teacher network, respectively. 

To proceed further we make the replica-symmetric ansatz, i.e. we assume that the 
values of the order parameters are independent of their replica indices, 

gab = q and Gab = 4 Qa < b 
R, = R and 8, = Qa 

&. = & and e* = e Qa . - (24) 

Evaluation of equations (19) and (20) with this ansatz is straightforward, resulting in 
the following expression for the replica-symmetric average entropy density: 
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and 

E1 = Y 

Ez = Y E  

As expected, the thermodynamic relationship (17) gives E = 1/T. The replica- 
symmetric order parameters ( E ^ ,  d ,  8, Q, q, R) are given by the saddle-point equations 

For e, a, 7 and Q fixed, this system of coupled equations is solved numerically and its 
solution inserted into (2.5). As a function of the training error e, the average entropy 
density increases with increasing e, reaches its maximum value Q In 2 at E = I and 
then decreases as E increases further towards 1. Furthermore, since the traming 
energy defined by (4) satisfies E (-W) = 1 - E ( W ) ,  the entropy density must be 
invariant with respect to reflection about the point c = 4. We note, however, that 
the region 4 < E < 1 corresponds to a regime of negative temperatures and refer 
the reader to Landau and Lifshitz (1980) for a physical interpretation of a similar 
phenomenon in the context of solid state physics. 

As we are interested in the groundstate properties, we must look for the lowest 
value of E for which the entropy is positive. In contrast with the exact entropy density 
S ( E )  which cannot assume finite negative values, the replica-symmetric entropy density 
.,(e) can become negative for certain values of the parameters a, Q and 7.  We 
define then the replica-symmetric estimate of the ground-state training error as the 
lowest value of E 2 0 for which S J E )  is positive and denote it by et. Clearly, if 

2 '. 



1854 

et = 0 then s=(c)  2 0 for all e and the replica-symmetric theory is exact, provided the 
replica-symmetric saddle-point is locally stable. On the other hand, in the case et > 0, 
the replica-symmetric theory predicts that a,(€) vanishes at e = et and is negative for 
6 < er This is a clear indication that the ansatz (24) does not describe correctly the 
structure of the order parameters for t < E, .  However, Krauth and Mezard (1989) 
have shown that the condition ~ ~ ( 6 )  = 0 actually determines the exact ground state 
of the training energy for the random-mapping problem (Q = 1 and 7 = 0). Due to 
the similarity between the models, we believe that the replica-symmetric estimate et 
determines the exact ground state of the diluted models too, provided again that the 
replica-symmetric saddle-point is locally stable. In any event, we mention that, even 
for models that possess a more complex ground-state structure, the microcanonical 
replica-symmetric theory gives estimates for the ground-state training energy which are 
comparable with the estimates of the canonical one-step replica symmetry breaking 
theory (Fontanari and Meir 1993). We note that for fixed a, y and Q, the knowledge 
of el suffices for specifying the values of all order parameters that characterize the 
ground state. For instance, the ground-state generalization error is given by (5) with 
R replaced by its saddle-point value calculated at e = el. 

The condition for the local stability of replica-symmetric saddle point (de Almeida 
and Thouless 1978) is given by 

D M L Barbalo and J F Fontanari 

0 7 U 7 l  < 1 (35) 

where y, and y, are the transvew eigenvalues of the in( nf3)-dimensional matrices 
of second derivatives of G, and G, with respect to tab and qabr respectively. 
Following the analysis of Gardner and Derrida (1988) we find 

and 

where 

with E ,  and c2 given in (26) and (27) respectively. 
Henceforth we shall refer to the replica-symmetric ground-state training and 

generalization errors as simply the training and generalization errors, denoted by tt 

and E* respectively. With regard to the computation of the networKs storage capacity 
a, we must seek the larger value of CY for which et = 0. In this case, the saddle- 
point equations simplify considerably, since (34) implies that E^ -+ CO. In fact, setting 
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0.0 0.2 0.4 0.6 0.8 1.0 

0 

Figure 1. The storage capacity 0 1 ~  for the annealed dilution as function of the connectivity 
Q for (from top to boltom) y = 1 ,  0.9, 0.5 and 0. 

e = y = 0 we recover the results of Bouten ef a1 (199Ob) for the random-mapping 
problem. 

In figure 1 we show ac as a function of Q for several values of y. The upper 
curve (y = 1) tends to a = 1.23 as Q approaches 1. In this limit, the training 
error vanishes for all a and the value a = 1.23 signals a transition to a regime 
of perfect generalization (Gybrgi 1990, Seung et al 1992.). This figure shows that a 
moderate cutting of weights actually improves the network’s storage capacity, as seen 
by the increase of a, as Q departs from 1. It seems then that, for small CY, the 
enlargement of the weight space compensates for the damaging effects of dilution 
embodied in constraint (6). The value of Q corresponding to the maximum of  CY^ 
for a fixed y can be calculated by extremizing spi with respect to Q. For y = 0 
this maximum is ad = 1.17 obtained for Q = 0.63 (Bouten ef al 1990b), while 
for y = 1 it is a, = 2.58 obtained for Q = 0.82. In fact, allowing Q to be an 
order parameter, determined by the saddle-point equation as,/aQ = 0, results in 
a version of the problem of learning over-realizable rules (Meir and Fontanari 1992), 
since in this case the computational power of the student network exceeds that of the 
teacher network The limit y = 0 (random mapping) of this problem was studied by 
Gutfreund and Stein (1990) who have also obtained the maximal value of the storage 
capacity given above. We note that in the case of real-weights networks trained to 
realize a random input/output mapping the dilution process always deteriorates the 
network’s performance (Bouten ef a1 1990a). 

As a increases beyond as, the destructive effects of dilution on the network’s 
memorization ability become more pronounced as depicted in figure 2, where we 
show the training error as function of a for y = 1 and Q = 0.5, 0.8 and 0.98. In 
fact, it seems that the larger the lesion (the smaller the Q), the more rapidly the 
network’s performance degrades with increasing a. Leaving aside the case Q = 1, 
we note that for each a there exists a particular value of Q for which E (  is minimal. 
The same behaviour occurs for y < 1, except that in this case the fully-connected 
network (Q = 1) can perform worse than the diluted ones. In the limit of large a, 
it can easily he shown that 

1 
E t  % - cos-*(y&) a --t w 

?r 

so the larger Q is, the better is the performance. 
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0.06 I I 

3 4 
a 

Figure 2. Training error C L  for the annealed dilution as funclion oi ~1 for Q = 0.5 
(full curve), 0.8 (broken curve) and 0.98 (shorf-broken curve). For the fullyconnected 
(Q = 1) network. we find CI = 0 for all 01. The noise parameter is 7 = 1. 

0.5 
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D 
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0 I e 3 4 
a 

Figure 3. Generalization error fg for the annealed dilution as function of Q for (f” 
top lo bottom) Q = 0.5, 0.8, 0.9, 0.98 and 1. The noise parameter is y = 1. 

The generalization error E as function of a is shown in figure 3 for y = 1 and 
several values of Q. As mentioned before, a discontinuous transition to a phase of 
perfect generalization (eg = 0) takes place at a = 1.23 for Q = 1. The discontinuous 
transition persists for Q near 1, though the jump becomes smaller as Q decreases. 
The discontinuity for Q < 1 occurs for a < a,. As Q decreases further, reaching 
the value Q i~ 0.94, the generalization error becomes a smooth function of a, 
approaching its asymptotic value, 

F 

continuously with increasing a. As a consequence of our definition of the 
generalization function (equation (5)) the training error can become larger than the 
generalization error for y < 1, as can be seen from (40) and (41). In contrast to 
the memorization performance, in the case of training with pure patterns (y = 1) 
cutting weights always results in degradation of the generalization performance of 
the network, independently of the value of a. In the case of training with noisy 
patterns (y < 1) however, the generalization performance for a given size of the 
training set can be improved by elimination of a small fraction of weights, as depicted 
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Figu~t 4. Generalization ermr fB for the annealed dilution as function of the connectivity 
(2 for (from lop to boltom) OL = 0.5, 1.0, 1.5, 2.0, 3.0 and 5.0. The noise parameter 
is y = 0.9. 

in figure 4, where we show eg against Q for y = 0.9 and various a. For small a, 
the genemiit ion error is practically insensitive to the cutting of weights, the best 
performance being achieved for Q = 1. As a increases, the value of Q that gives 
the minimal generalization error starts to decrease and then turns to increase again, 
tending to 1 for large a in agreement with (41). This behaviour is reminiscent of 
that found on the analysis of the problem of training real-weights networks with noisy 
examples at non-zero temperatures (Gyorgi and Tishby 1989), with T playing a role 
analogous to the connectivity Q. 

We have verified that the replica-symmetric saddle-point is locally stable, in the 
sense of (39, for all E 2 el. 

4. Quenched dilution 

In this case we set Wi = 0 (i = NQ + 1,. . . , N) and allow the remaining NQ 
weights to take on the values -+1 only so that constraint (6) is satisfied automatically, 
without the need of being enforced by a Kronecker delta. Similarly to the analysis of 
the annealed dilution we find 

where 

G, = ln n exp 4,,wawb + C~C,W~WO )} (43) Y a = l ( W n = & l )  ( a < b  a 

and G, is given in (20). At this point we note that (42) gives the entropy density 
of a perceptron of N' = QN input units trained with P = a ' N t  input/output pairs 
( S ' , t f )  where the noisy input patterns are drawn from the conditional probability 
distribution (3) with y replaced by 7' = rfl.  Thus the main effect of quenched 
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I I 

Figure S. Same a s  figure 1, but for the quenched dilution. 

dilution, besides the obvious rescaling of N ,  is to introduce an effective noise in the 
training process. 
Using the replica-symmetric ansatz (equation (24)) we obtain 

I 4 
2 

4<)/Q = a'& - -(1- q)  - R R  + Dy ln[2cosh( a + y d ) ]  

t 2a' J D ~ H ( . Q I ~ [ ~ - '  + ( 1  - e - z ) ) ~ ( ~ ~ ) l  

q = 1 Dy tanh2(a + U&) 

(44) 

with E,  and E2 given in (26) and (27), respectively. The derivatives of s, with respect 
to R, q and E^ result in the saddle-point equations (32), (33) and (34), while the 
derivatives with respect to 6 and yield 

(45) 

and 

R = Dy tanh( I? + y&) (46) J 
respectively. The condition for the local stability of the replica-symmetric saddle point 
is again given by (35), with y1 as in (37) and yu given by 

The storage capacity as a function of Q is shown in figure 5 for various y. 
The curve for y = 0 is a, = a,(O)Q where cu,(O) = 0.83 is the storage capacity 
of the fully-connected network. As in the case of annealed dilution, the curve 
for y = 1 tends to a = 1.23 as Q -+ 1. This value of Q is not the network's 
storage capacity (et = 0 for all a in this limit) but signals a transition to a phase 
of perfect generalization. In contrast to the annealed dilution, the storage capacity 
is degraded for any degree of dilution. In figures 6 and 7 we show the training 
and the generalization errors, respectively, as functions of a for 7 = 1 and different 
values of Q. It is interesting to compare these figures with their counterparts for the 
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Figure 6. Paining error cI for the quenched dilution as function of 01 for (from top to 
botlom) Q = 0.5, 0.8, 0.9 and 0.99. The noise parameter is y = 1. 

Figure 7. Generalization ermr eg for the quenched dilution as function of oi for (from 
top to bottom) Q = O S ,  0.8, 0.9, 0.98, 0.99 and 1. The noise parameter is y = 1. 

annealed dilution, figures 2 and 3. Although the asymptotic limits, ((41) and (40)) 
are the same for both types of dilution, the generalization error for the annealed 
dilution approaches its minimal value much faster than for the quenched dilution. The 
situation is reversed for the training error. The discontinuity on the generalization 
error for Q < 1 occurs for a > a,, and disappears for values of Q larger than in 
the annealed case. 

To better appreciate the effects of the different types of dilution on the network’s 
memorization and generalization abilities, we present in figures 8 and 9 the training 
and the generalization errors, respectively, as functions of Q for a = 3.0 and y = 1. 
With these parameters we find et = = 0 for the fully connected (Q = 1) network. 
The low sensitivity of the annealed training error to dilution is not surprising, since 
the learning process is designed to minimize this quantity. The generalization error, 
however, increases rapidly as Q departs from 1. As expected, the overall performance 
of the network is less affected in the case of annealed dilution, although the gain on 
the generalization error, as compared with the quenched case, is not as pronounced 
as the gain on the training error. 

As in the annealed case, the replica-symmetric saddle point is locally stable for 
all E 2 et. 

, 
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Figure 8. 'Raining error 6,  as function of the connectivity Q lor the annealed (lower 
c w e )  and quenched (upper euwe) dilutions. The lraining se1 size is U = 3.0 and the 
noise parameter is y = 1. 

Q 

Figure 9. Same as figure 8, but for the generalization e m r  cc 

5. Discussion 

We have studied the effects of two types of dilution (lesions), annealed and quenched, 
on the memorization and generalization capabilities of a single-layer perceptron of 
binary (hl) weights. In both cases the network is damaged before the learning process 
takes place. Since cutting weight W, is equivalent to killing input neuron Si, the 
annealed dilution can be thought of as a process where some other input neuron 
Si takes over the function of neuron Si, with the loss of its own function, so the 
overall performance of the network is less affected by the lesion. The quenched 
dilution, however, .models a process where this flexibility does not exist. Actually, 
both processes have been observed in children who received severe injury on only 
one of the brain's hemispheres (Lindsay and Norman 1977). If the patient is at an 
early enough age, the other side of the brain can take over, compensating for the 
damage. It is impossible, however, to know whether or not this compensation is 
complete, since it would be necessary to know how the person would have developed 
had the brain been normal. Clearly, this is the type of process that the annealed 
dilution is aimed at modelling. As the organism grows older, the brain loses this 
flexibility, the process being then best described by the quenched dilution. One of 
the  main advantages of studying lesions on artificial neural networks is that we have 
access to the performance of the non-damaged (fully connected) network, which can 
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then be used to single out the effects of the lesion. 
W e  have also considered the problem of training the student perceptron with 

noisy input patterns S' which fluctuate around the pure input patterns 5' with variance 
l-y2. This problem proved to be closely related to the dilution problem: a decreasing 
of the network's connectivity corresponding to an increasing of the noise's variance. 

Our analytical results were all obtained within the microcanonical replica- 
symmetric framework, which we believe gives exact results for the diluted discrete- 
weights neural networlcs considered in this paper. Our main results are the following. 

(i) The annealed dilution increases the storage capacity of the network provided 
the connectivity is not too low. The gain on aC becomes more pronounced as the 
noise's strength decreases (i.e. y -t 1). 

(ii) In the case of training a highly connected (Q = 1) perceptron with pure 
examples (y = l), the generalization error as a function of the training set size 
presents a discontinuity at some value of CY which is smaller than a, in the annealed 
case, but greater than CY, in the quenched case. The training error, however, is 
continuous for all a. This behaviour resembles the discontinuous transition to a 
phase of perfect generalization that occurs for Q = 1. 

(i) In the case of training with noisy patterns (y < l), the annealed diluted 
networks can achieve the best generalization performance, depending on value of the 
training set size, a. In the case of training with pure patterns (7 = 1) the best 
generalization performance is achieved by the fully-connected (Q = 1) perceptron. 

(iv) The effect of the quenched dilution is to rescale the number of input units 
N' = Q N and the noise parameter y' = y n .  The networKs performance is always 
degraded for this type of dilution. 

(v) In the limit CY - 00, both types of dilution give identical results: the 
training error approaches its maximal value while the generalization error approaches 
its minimal value given in (40) and (41), respectively. The difference is that, 
as a increases, the annealed diluted networks reach the asymptotic limit of the 
generalization error much faster than the quenched diluted networb. 

We should emphasize that the performance improvements obtained in the case 
of annealed dilution are probably an artefact of the restriction to binary weights, 
since for such networb the dilution can actually increase the number of possible 
separating hyperplanes In fact, Bouten et a1 (199Oa) have shown that, in the case 
of real-weights network trained to realize random mappings, the annealed dilution 
decreases the storage capacity. 

We have performed a similar analysis using the the canonical replica-symmetric 
formulation where the ground-state properties are obtained in the limit of zero 
temperature. In fact, the canonical saddle-point equations are identical to the 
microcanonical ones, except that 8 is replaced by the f ied parameter = 1/T so that 
(34) must be discarded. It is well known that this formulation is not appropriate to 
describe unrealizable (or random) rules, since it overestimates the network's storage 
capacity, obtained by taking the limit q - 1 in the saddle-point equations. As 
a result, the dependence of the training error on CY is totally different from that 
obtained within the microcanonical formulation. Surprisingly, we have found that the 
dependence of the generalization error on 01 for y = 1 (figure 3) is indistinguishable 
in both formulations. For y < 1, however, the canonical replica-symmetric theory 
predicts an increase of the generalization error for a between the microcanonical and 
the canonical estimates of 01, (the entropy is negative in this region), which is not 
seen in the microcanonical results. The reason why the two ensembles give different 
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results is that the temperature associated with the ground state in the microcanonical 
ensemble, obtained through relationship (17), is not zero for > 0. In the region 
CY < aC where c[ = 0, both ensembles give identical results since (34) implies 

An interesting issue, which we have not pursued in this paper, is the effects of 
cutting weights afer the learning process has finished. This problem can be studied 
by Iookmg at the distribution of the stabilities for the ground-state configuration W, 
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2 =  ~ / T - c o .  

as function of Q (Kepler and Abbott 1988, Bouten et a1 1990a). Clearly, the larger 
A', the more stable pattern E' is against destruction of weights. 

It would also be interesting to study the effects of dilution on the generalization 
ability of real-weights perceptrons, since these networb are somewhat more realistic 
than the binary-weights perceptrons considered in this paper. Moreover, we could 
check the theoretical predictions through numerical simulations, employing, for 
instance, Rosenblatt's algorithm (Rosenblatt 1962) to find the ground-state weight 
configurations for a given realization of the input/output mapping. Unfortunately, 
a numerical verification of the results presented in this paper is not possible, since 
the problem of finding a ground-state configuration for the binary-weights perceptron 
is equivalent to the integer programming problem, and therefore belongs to the 
NP-complete class (Garey and Johnson 1979). The best heuristic we know, the 
directeddrift algorithm (Venkatesh 1991, Fontanari and Meir 1991), becomes useless 
for network of size larger than N = 30, while our analytical results were obtained 
in the thermodynamic limit, N -+ CO. 
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